organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-Diamino-*N*,*N*'-(*o*-phenylene)dibenzamide

Irvin Booysen,^a Thomas I. A. Gerber,^a* Eric Hosten^a and Peter Mayer^b

^aDepartment of Chemistry, Nelson Mandela Metropolitan University, 6031 Port Elizabeth, South Africa, and ^bDepartment of Chemistry, Ludiwig-Maximilians University, D-81377 München, Germany Correspondence e-mail: thomas.gerber@nmmu.ac.za

Received 9 March 2009; accepted 13 March 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.122; data-to-parameter ratio = 12.6.

In the structure of the title compound, $C_{20}H_{18}N_4O_2$, the N-H and C=O bonds are *trans* to each other and the amide O atoms are *syn* to the *ortho* amino N atom in the benzoyl rings. The amide groups form dihedral angles of 8.4 (2) and 13.8 (2)° with their respective benzoyl rings, and dihedral angles of 51.85 (16) and 51.19 (17)° with the phenylenediamine ring. In the crystal, a centrosymmetric dimer is formed by intermolecular N-H···O hydrogen bonds, resulting in an $R_2^2(14)$ descriptor on a unitary level of graph-set analysis, and three intramolecular N-H···O bonds also occur.

Related literature

For the synthesis, see: Black & Rothnie (1983). For metal coordination, see: Booysen *et al.* (2008). For stereoselectivity in synthesis, see: Valik *et al.* (2002). For applications of polyamides, see: Kang *et al.* (2001). For related structures, see Gowda *et al.* (2003, 2008). For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data	
$C_{20}H_{18}N_4O_2$	b = 14.4308 (6) Å
$M_r = 346.38$	c = 13.6161 (6) Å
Monoclinic, $P2_1/n$	$\beta = 97.291 \ (3)^{\circ}$
a = 8.7464 (3) Å	$V = 1704.69 (12) \text{ Å}^3$

Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Nonius KappaCCD diffractometer3893 independent reflectionsAbsorption correction: none2085 reflections with $I > 2\sigma(I)$ 7575 measured reflections $R_{int} = 0.049$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 308 parameters $wR(F^2) = 0.122$ All H-atom parameters refinedS = 0.99 $\Delta \rho_{max} = 0.19$ e Å $^{-3}$ 3893 reflections $\Delta \rho_{min} = -0.20$ e Å $^{-3}$

T = 200 K

 $0.16 \times 0.14 \times 0.10 \ \mathrm{mm}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO2$ $N3-H3\cdotsO1^{i}$ $N4-H42\cdotsO2$ $N2-H21\cdotsO1$	0.849 (17) 0.86 (2) 0.97 (3) 0.95 (2)	1.986 (18) 2.10 (2) 1.88 (3) 1.95 (2)	2.694 (2) 2.929 (2) 2.646 (3) 2.667 (2)	140.4 (17) 163.0 (17) 134 (2) 130.2 (19)

Symmetry code: (i) -x + 1, -y, -z + 2.

Data collection: *COLLECT* (Nonius, 2004); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *PLATON* (Spek, 2009) and *WinGX* (Farrugia, 1999).

The authors thank Professor P. Klüfers for generous allocation of diffractometer time.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2594).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Black, D. S. & Rothnie, N. E. (1983). Aust. J. Chem. 36, 1141-1147.
- Booysen, I., Gerber, T. I. A., Hosten, E. & Mayer, P. (2008). J. Iran. Chem. Soc. 5, 689–693.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, 01365.
- Kang, S. J., Hong, S. I., Park, C. R. & Oh, T. J. (2001). Fibres Polym. 2, 92-97.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,
- R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Valik, M., Dolensky, B., Petrickova, H. & Krul, V. (2002). Collect. Czech. Chem. Commun. 67, 609–621.

supplementary materials

Acta Cryst. (2009). E65, 0850 [doi:10.1107/S1600536809009283]

2,2'-Diamino-N,N'-(o-phenylene)dibenzamide

I. Booysen, T. I. A. Gerber, E. Hosten and P. Mayer

Comment

In the present work the structure of N,N-(1,2-phenylene)bis(2-aminobenzamide) has been determined to explore its suitability as a tetradentate ligand for various metal ions. The conformations of N—H and C=O bonds in the amide groups are *trans* to each other (Fig. 1), similar to that observed in other benzamides and benzamilides (Gowda *et al.*, 2003, 2008). Also, the conformations of the amide O atoms are *syn* to the *ortho* amino groups in the benzoyl rings. The amide group N1HC1O1 makes dihedral angles of 8.4 (2)° and 51.85 (16)° with the benzoyl and phenylene rings respectively. For the N3HC14O2 group, these values are 13.8 (2)° and 51.19 (17)°. The C2–C7 and C15–C20 benzoyl rings form dihedral angles of 59.64 (17)° and 64.86 (18)° respectively with the phenylene ring.

The conformational arrangement of the rings is mainly determined by intra- and intermolecular hydrogen-bonds. The graph set descriptor for the intramolecular hydrogen bonds is S(6)S(6)S(7) on a unitary level. Centrosymmetric dimers are formed by two intermolecular hydrogen bonds of the type N—H···O resulting in a $R^2_2(14)$ descriptor on a unitary level. The hydrogen bonding pattern is shown in Fig. 2.

Experimental

The title compound was prepared according to the literature method (Black & Rothnie, 1983). The purity of the compound was checked by determining its melting point. It was characterized by recording its IR and ¹H NMR spectra. Single crystals of the title compound were obtained from a pyridine/ethanol (1:1, v/v) solution.

Refinement

The H atoms were located in the difference map, their positional and isotropic vibrational parameters were refined freely.

Figures

Fig. 1. The molecular structure of the title compound (anisotropic displacement ellipsoids drawn at the 50% probability level).

Fig. 2. Hydrogen bonds (dashed lines) determining the conformational arrangement of the rings. For details of the hydrogen bonds see Table 1.

2,2'-Diamino-N,N'-(o-phenylene)dibenzamide

Crystal data	
$C_{20}H_{18}N_4O_2$	$F_{000} = 728$
$M_r = 346.38$	$D_{\rm x} = 1.350 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 532 K
Hall symbol: -P 2yn	Mo K α radiation $\lambda = 0.71073$ Å
a = 8.7464 (3) Å	Cell parameters from 12612 reflections
b = 14.4308 (6) Å	$\theta = 3.1 - 27.5^{\circ}$
c = 13.6161 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 97.291 \ (3)^{\circ}$	T = 200 K
$V = 1704.69 (12) \text{ Å}^3$	Block, brown
Z = 4	$0.16 \times 0.14 \times 0.10 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	3893 independent reflections
Radiation source: rotating anode	2085 reflections with $I > 2\sigma(I)$
Monochromator: MONTEL, graded multilayered X-ray optics	$R_{\rm int} = 0.049$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 200 K	$\theta_{\min} = 3.2^{\circ}$
CCD; rotation images; thick slices scans	$h = -11 \rightarrow 11$
Absorption correction: none	$k = -18 \rightarrow 18$
7575 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0521P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.122$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.99	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
3893 reflections	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$

308 parameters

Extinction correction: SHELXL97 (Sheldrick, 2008)

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0130 (17)

Secondary atom site location: difference Fourier map

Fractional atomic coordinates and is	sotropic or equivalent isotropic	displacement parameters $(Å^2)$)
--------------------------------------	----------------------------------	---------------------------------	---

	x	У	Ζ	$U_{iso}*/U_{eq}$
01	0.50757 (13)	0.19967 (8)	1.10126 (9)	0.0426 (4)
O2	0.33370 (13)	0.11696 (9)	0.75452 (9)	0.0431 (4)
N1	0.45030 (17)	0.17105 (11)	0.93824 (12)	0.0371 (4)
N2	0.3038 (2)	0.28860 (15)	1.19702 (14)	0.0599 (5)
N3	0.43678 (16)	-0.00594 (12)	0.84087 (11)	0.0364 (4)
N4	0.1025 (3)	0.08932 (14)	0.61238 (15)	0.0579 (5)
C1	0.41993 (19)	0.21187 (12)	1.02250 (14)	0.0343 (4)
C2	0.27907 (18)	0.27011 (11)	1.01692 (13)	0.0350 (4)
C3	0.2292 (2)	0.30615 (13)	1.10429 (15)	0.0437 (5)
C4	0.0941 (2)	0.35939 (15)	1.0947 (2)	0.0552 (6)
C5	0.0119 (2)	0.37821 (15)	1.00496 (19)	0.0566 (6)
C6	0.0630(2)	0.34564 (15)	0.91861 (18)	0.0552 (6)
C7	0.1946 (2)	0.29271 (14)	0.92620 (16)	0.0457 (5)
C8	0.58760 (18)	0.12237 (12)	0.92527 (12)	0.0334 (4)
С9	0.57907 (18)	0.03780 (12)	0.87594 (12)	0.0331 (4)
C10	0.7152 (2)	-0.00822 (14)	0.86314 (14)	0.0408 (5)
C11	0.8571 (2)	0.02948 (15)	0.89720 (14)	0.0451 (5)
C12	0.8644 (2)	0.11444 (14)	0.94410 (14)	0.0422 (5)
C13	0.7312 (2)	0.16123 (14)	0.95732 (13)	0.0377 (5)
C14	0.32233 (19)	0.03407 (13)	0.77899 (12)	0.0346 (4)
C15	0.18663 (18)	-0.02232 (12)	0.74265 (12)	0.0339 (4)
C16	0.0793 (2)	0.00956 (13)	0.66357 (13)	0.0419 (5)
C17	-0.0521 (2)	-0.04422 (16)	0.63397 (16)	0.0501 (5)
C18	-0.0768 (2)	-0.12620 (16)	0.67972 (17)	0.0515 (6)
C19	0.0285 (2)	-0.15877 (15)	0.75605 (16)	0.0480 (5)
C20	0.1582 (2)	-0.10711 (13)	0.78674 (15)	0.0408 (5)
H13	0.7350 (18)	0.2213 (13)	0.9913 (13)	0.043 (5)*
H20	0.2287 (19)	-0.1285 (12)	0.8428 (13)	0.044 (5)*
H1	0.3885 (19)	0.1773 (13)	0.8853 (13)	0.040 (6)*
H10	0.7102 (18)	-0.0671 (13)	0.8292 (12)	0.041 (5)*
H12	0.960 (2)	0.1435 (12)	0.9685 (13)	0.047 (5)*
H3	0.435 (2)	-0.0647 (15)	0.8504 (13)	0.044 (6)*
H11	0.951 (2)	-0.0045 (13)	0.8853 (15)	0.062 (6)*
Н5	-0.083 (2)	0.4151 (14)	1.0036 (13)	0.059 (6)*
H17	-0.132 (2)	-0.0200 (13)	0.5784 (14)	0.056 (6)*
H18	-0.168 (2)	-0.1625 (14)	0.6568 (14)	0.056 (6)*
H7	0.231 (2)	0.2720 (13)	0.8671 (15)	0.050 (5)*
H4	0.063 (2)	0.3824 (14)	1.1515 (16)	0.068 (7)*
H19	0.011 (2)	-0.2158 (14)	0.7871 (13)	0.052 (6)*
H41	0.027 (3)	0.1085 (16)	0.5717 (18)	0.076 (8)*
Н6	0.010 (2)	0.3612 (14)	0.8493 (17)	0.076 (7)*

supplementary materials

H42	0.178 (3)	0.1311 (17)	0.647 (2)	0.090 (8)*
H21	0.405 (3)	0.2631 (16)	1.2012 (17)	0.083 (8)*
H22	0.288 (3)	0.3284 (19)	1.2441 (19)	0.090 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0509 (8)	0.0387 (8)	0.0375 (8)	0.0062 (6)	0.0034 (6)	-0.0021 (6)
O2	0.0499 (8)	0.0374 (8)	0.0412 (8)	-0.0016 (6)	0.0027 (6)	0.0061 (6)
N1	0.0371 (9)	0.0387 (10)	0.0349 (10)	0.0081 (7)	0.0030 (7)	-0.0038 (8)
N2	0.0682 (14)	0.0678 (14)	0.0466 (12)	0.0046 (10)	0.0183 (10)	-0.0122 (10)
N3	0.0359 (9)	0.0300 (10)	0.0427 (10)	0.0037 (7)	0.0025 (7)	0.0016 (8)
N4	0.0608 (12)	0.0560 (13)	0.0524 (12)	0.0074 (10)	-0.0109 (10)	0.0137 (10)
C1	0.0402 (10)	0.0275 (10)	0.0362 (11)	-0.0034 (8)	0.0095 (9)	0.0002 (8)
C2	0.0378 (10)	0.0266 (10)	0.0423 (11)	0.0012 (8)	0.0113 (8)	0.0010 (8)
C3	0.0472 (11)	0.0365 (12)	0.0508 (13)	-0.0022 (9)	0.0190 (10)	-0.0027 (9)
C4	0.0543 (13)	0.0481 (14)	0.0689 (17)	0.0041 (11)	0.0304 (13)	-0.0071 (12)
C5	0.0436 (12)	0.0419 (13)	0.0876 (19)	0.0088 (10)	0.0206 (13)	0.0030 (12)
C6	0.0478 (12)	0.0506 (14)	0.0675 (16)	0.0117 (10)	0.0088 (11)	0.0100 (12)
C7	0.0450 (11)	0.0459 (13)	0.0481 (13)	0.0087 (9)	0.0135 (10)	0.0040 (10)
C8	0.0332 (9)	0.0344 (11)	0.0333 (10)	0.0045 (8)	0.0072 (7)	0.0033 (8)
C9	0.0343 (10)	0.0332 (11)	0.0318 (10)	0.0030 (8)	0.0048 (7)	0.0029 (8)
C10	0.0428 (11)	0.0397 (12)	0.0410 (12)	0.0073 (9)	0.0089 (9)	-0.0009 (9)
C11	0.0380 (11)	0.0521 (14)	0.0462 (13)	0.0092 (10)	0.0093 (9)	0.0028 (10)
C12	0.0336 (11)	0.0521 (14)	0.0409 (12)	-0.0017 (10)	0.0043 (9)	0.0058 (10)
C13	0.0400 (11)	0.0370 (12)	0.0364 (11)	-0.0004 (9)	0.0054 (8)	0.0022 (9)
C14	0.0388 (10)	0.0367 (12)	0.0302 (10)	0.0053 (9)	0.0114 (8)	0.0008 (9)
C15	0.0363 (10)	0.0355 (11)	0.0303 (10)	0.0035 (8)	0.0061 (8)	-0.0022 (8)
C16	0.0456 (11)	0.0428 (13)	0.0370 (12)	0.0075 (9)	0.0041 (9)	-0.0029 (9)
C17	0.0438 (12)	0.0540 (15)	0.0498 (14)	0.0046 (11)	-0.0045 (10)	-0.0093 (11)
C18	0.0405 (12)	0.0522 (15)	0.0613 (15)	-0.0014 (11)	0.0038 (10)	-0.0189 (12)
C19	0.0451 (12)	0.0421 (13)	0.0580 (14)	-0.0019 (10)	0.0113 (10)	-0.0032 (11)
C20	0.0406 (11)	0.0416 (12)	0.0403 (12)	0.0018 (9)	0.0055 (9)	-0.0002 (9)

Geometric parameters (Å, °)

O2—C141.249 (2)C7—H70.95 (2)N1—C11.346 (2)C8—C91.390 (2)N1—C81.421 (2)C8—C131.394 (2)N1—H10.849 (17)C9—C101.394 (2)	O1—C1	1.249 (2)	С6—Н6	1.02 (2)
N1—C11.346 (2)C8—C91.390 (2)N1—C81.421 (2)C8—C131.394 (2)N1—H10.849 (17)C9—C101.394 (2)	O2—C14	1.249 (2)	С7—Н7	0.95 (2)
N1—C81.421 (2)C8—C131.394 (2)N1—H10.849 (17)C9—C101.394 (2)	N1—C1	1.346 (2)	C8—C9	1.390 (2)
N1—H1 0.849 (17) C9—C10 1.394 (2)	N1—C8	1.421 (2)	C8—C13	1.394 (2)
	N1—H1	0.849 (17)	C9—C10	1.394 (2)
N2—C3 1.369 (3) C10—C11 1.380 (3)	N2—C3	1.369 (3)	C10—C11	1.380 (3)
N2—H21 0.95 (2) C10—H10 0.966 (19)	N2—H21	0.95 (2)	С10—Н10	0.966 (19)
N2—H22 0.89 (3) C11—C12 1.380 (3)	N2—H22	0.89 (3)	C11—C12	1.380 (3)
N3—C14 1.353 (2) C11—H11 0.986 (19)	N3—C14	1.353 (2)	C11—H11	0.986 (19)
N3—C9 1.423 (2) C12—C13 1.378 (3)	N3—C9	1.423 (2)	C12—C13	1.378 (3)
N3—H3 0.86 (2) C12—H12 0.957 (18)	N3—H3	0.86 (2)	С12—Н12	0.957 (18)
N4—C16 1.374 (2) C13—H13 0.981 (18)	N4—C16	1.374 (2)	С13—Н13	0.981 (18)
N4—H41 0.85 (2) C14—C15 1.472 (2)	N4—H41	0.85 (2)	C14—C15	1.472 (2)

N4—H42	0.97 (3)	C15—C20	1.399 (2)
C1—C2	1.485 (2)	C15—C16	1.413 (2)
C2—C7	1.395 (3)	C16—C17	1.403 (3)
C2—C3	1.417 (2)	C17—C18	1.367 (3)
C3—C4	1.402 (3)	С17—Н17	1.024 (19)
C4—C5	1.364 (3)	C18—C19	1.380 (3)
C4—H4	0.91 (2)	C18—H18	0.97 (2)
C5—C6	1.391 (3)	C19—C20	1.378 (3)
С5—Н5	0.98 (2)	С19—Н19	0.945 (19)
C6—C7	1.374 (3)	C20—H20	0.968 (18)
C1—N1—C8	125.70 (16)	C8—C9—C10	118.97 (16)
C1—N1—H1	120.3 (12)	C8—C9—N3	122.85 (14)
C8—N1—H1	113.8 (12)	C10-C9-N3	118.14 (17)
C3—N2—H21	117.2 (14)	C11—C10—C9	121.07 (19)
C3—N2—H22	116.6 (16)	С11—С10—Н10	119.5 (10)
H21—N2—H22	116 (2)	С9—С10—Н10	119.4 (10)
C14—N3—C9	124.48 (17)	C10-C11-C12	119.55 (18)
C14—N3—H3	119.2 (12)	C10-C11-H11	118.6 (11)
C9—N3—H3	114.9 (12)	C12—C11—H11	121.8 (11)
C16—N4—H41	116.7 (15)	C13—C12—C11	120.32 (18)
C16—N4—H42	114.2 (15)	С13—С12—Н12	117.2 (11)
H41—N4—H42	122 (2)	C11—C12—H12	122.5 (11)
01—C1—N1	120.28 (16)	C12—C13—C8	120.35 (19)
O1—C1—C2	122.57 (16)	С12—С13—Н13	121.0 (10)
N1—C1—C2	117.15 (16)	С8—С13—Н13	118.6 (10)
C7—C2—C3	118.21 (17)	O2—C14—N3	119.81 (16)
C7—C2—C1	121.35 (16)	O2—C14—C15	121.86 (16)
C3—C2—C1	120.42 (16)	N3—C14—C15	118.33 (17)
N2—C3—C4	118.99 (19)	C20-C15-C16	118.35 (17)
N2—C3—C2	123.05 (17)	C20-C15-C14	121.25 (16)
C4—C3—C2	117.92 (19)	C16—C15—C14	120.38 (17)
C5—C4—C3	122.4 (2)	N4—C16—C17	119.08 (19)
C5—C4—H4	120.6 (13)	N4—C16—C15	122.20 (18)
C3—C4—H4	117.0 (13)	C17—C16—C15	118.67 (19)
C4—C5—C6	120.0 (2)	C18—C17—C16	121.3 (2)
C4—C5—H5	118.2 (11)	С18—С17—Н17	120.0 (10)
С6—С5—Н5	121.8 (11)	С16—С17—Н17	118.7 (10)
C7—C6—C5	118.7 (2)	C17—C18—C19	120.6 (2)
С7—С6—Н6	118.2 (12)	C17—C18—H18	119.4 (11)
С5—С6—Н6	123.1 (12)	C19—C18—H18	120.0 (11)
C6—C7—C2	122.8 (2)	C20-C19-C18	119.3 (2)
С6—С7—Н7	118.4 (11)	С20—С19—Н19	120.4 (11)
С2—С7—Н7	118.8 (11)	С18—С19—Н19	120.3 (11)
C9—C8—C13	119.69 (15)	C19—C20—C15	121.82 (19)
C9—C8—N1	119.96 (15)	С19—С20—Н20	118.9 (10)
C13—C8—N1	120.27 (16)	C15—C20—H20	119.1 (10)
C8—N1—C1—O1	-8.7 (3)	C8—C9—C10—C11	-1.0 (3)
C8—N1—C1—C2	171.86 (15)	N3—C9—C10—C11	-178.69 (17)
			. ,

supplementary materials

O1—C1—C2—C7	171.32 (17)	C9-C10-C11-C12	-0.5 (3)
N1—C1—C2—C7	-9.2 (2)	C10-C11-C12-C13	0.3 (3)
O1—C1—C2—C3	-7.1 (3)	C11—C12—C13—C8	1.3 (3)
N1—C1—C2—C3	172.34 (16)	C9—C8—C13—C12	-2.8 (3)
C7—C2—C3—N2	-179.81 (18)	N1-C8-C13-C12	-179.49 (16)
C1—C2—C3—N2	-1.3 (3)	C9—N3—C14—O2	-5.0 (2)
C7—C2—C3—C4	2.6 (3)	C9—N3—C14—C15	175.18 (14)
C1—C2—C3—C4	-178.97 (16)	O2-C14-C15-C20	-165.42 (16)
N2—C3—C4—C5	-178.67 (19)	N3-C14-C15-C20	14.4 (2)
C2—C3—C4—C5	-0.9 (3)	O2-C14-C15-C16	12.8 (2)
C3—C4—C5—C6	-1.2 (3)	N3-C14-C15-C16	-167.37 (15)
C4—C5—C6—C7	1.6 (3)	C20-C15-C16-N4	-176.21 (16)
C5—C6—C7—C2	0.1 (3)	C14—C15—C16—N4	5.5 (3)
C3—C2—C7—C6	-2.2 (3)	C20-C15-C16-C17	1.1 (3)
C1—C2—C7—C6	179.34 (17)	C14-C15-C16-C17	-177.18 (14)
C1—N1—C8—C9	135.32 (18)	N4-C16-C17-C18	177.07 (18)
C1—N1—C8—C13	-48.0 (3)	C15-C16-C17-C18	-0.3 (3)
C13—C8—C9—C10	2.6 (2)	C16—C17—C18—C19	-0.7 (3)
N1—C8—C9—C10	179.31 (16)	C17—C18—C19—C20	0.8 (3)
C13—C8—C9—N3	-179.83 (16)	C18—C19—C20—C15	0.0 (3)
N1—C8—C9—N3	-3.1 (2)	C16-C15-C20-C19	-1.0 (3)
C14—N3—C9—C8	55.6 (2)	C14—C15—C20—C19	177.33 (16)
C14—N3—C9—C10	-126.74 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O2	0.849 (17)	1.986 (18)	2.694 (2)	140.4 (17)
N3—H3···O1 ⁱ	0.86 (2)	2.10 (2)	2.929 (2)	163.0 (17)
N4—H42…O2	0.97 (3)	1.88 (3)	2.646 (3)	134 (2)
N2—H21…O1	0.95 (2)	1.95 (2)	2.667 (2)	130.2 (19)
Symmetry codes: (i) $-x+1, -y, -z+2$.				

